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1. Introduction

VaR is now a ubiquitous indicator of various forms of financial risk, used in a range of
settings where summary quantification and dynamic assessment of tail risk are required.
VaR is defined as a specified quantile of the loss distribution over a specified period,
or a loss that will not be exceeded with a predefined level of confidence. Market risk
estimation increasingly emphasises ES, which is the expected value of the loss conditional
on VaR being exceeded. A large literature has been developed to find better ways of
estimating VaR, within which the class of semi-parametric models known as Conditional
Autoregressive Value at Risk (CAViaR) (Engle and Manganelli, 2004), is based on directly
modelling the conditional quantiles of the distribution of returns. In this paper, we
introduce and evaluate versions of CAViaR models with two features designed to capture
long range dependence in a parsimonious manner - a slow moving component, and
aggregate returns at longer horizons as regressors.

There are several approaches to estimating VaR and the forecasting literature contains
various models that work reasonably well for different subsets of financial time series.
Several studies have pointed to the usefulness of CAViaR models for estimation of tail
risk, particularly due to the stylised features of financial asset returns (see, e.g., Kuester
et al., 2006; Chen et al., 2012; [Taylor, 2008; Jeon and Taylor, |2013; [Taylor, [2019; Patton
et al., 2019, among others). CAViaR models are particularly interesting because they have
also been used to produce ES estimates based on joint elicitability arguments (Fissler and
Ziegel, 2016, among others). However, the potential of CAViaR models in their various
specifications has not been fully explored. This is especially true for CAViaR models with

long range dependence, even though the volatility literature has for a long time adopted



several analogous models based on the work of |Ding and Granger| (1996)), Engle and Lee
(1999), and|Corsi (2009), among others. It is therefore worthwhile to examine the potential
of similar approaches to introducing long range dependence for improving VaR estimation
in CAViaR models.

Our study is also motivated by practical financial considerations in relation to
transaction costs and costly recapitalisation. In typical situations where investment sizes
are restricted by risk-based limits, frequent changes in the VaR could lead to unnecessary
transaction costs or to induce excessive conservatism leading to misallocation of capital.
Similarly, it is widely recognised that clustering and asymmetry in return volatility imply
that VaR increases when the value of investments falls. This in turn implies that a trader
would be forced to reduce their position at an unprofitable juncture, effectively selling
low and buying high, in order to bring their position in line with risk controls (see e.g.
Adrian and Shin, [2014). We hypothesise that gradual VaR adjustments, which can capture
low-frequency movements, would help make adjustments smoother and potentially reduce
transaction costs without raising the average level of capital required. If the VaR series
includes small gradual adjustments that come closer to anticipating the severity of future
shocks, this could reduce the need for costly recapitalisation by reducing the portion of a
realised loss when that loss exceeds the VaR.

To generate long range dependence we propose a two component model for the
quantile in the spirit of [Engle and Lee (1999) and Ding and Granger| (1996). This allows
the mean of the quantile to be time varying, allowing for one slower moving and one faster
moving component in the quantile process.

Our second model specification is to include information about past aggregate returns



at lower frequencies. There is limited evidence of predictability in daily returns for
stocks and indicesﬂ However, there are theoretical results (see e.g. |Levy et al.,|1994) and
empirical reports (see e.g. Shiller, 2015) that suggest that long periods of consistently high
gains are followed by larger negative shocks. If this is the case, past aggregate returns over
multiple horizons could help obtain improved predictions of the severity of large losses. E]

We extend the model specification in each case to simultaneously estimate ES.
Specifically, we incorporate an additional parameter in the style of [Taylor| (2019), which
implies a multiplicative relationship between the VaR and the corresponding ES. This
allows us to produce joint estimates of VaR and ES in a tractable manner.

In order to evaluate the performance of the models, we carry out an empirical exercise
on 10 stock index series, with the out of sample period extending over six years and
including the Covid-19 pandemic. Particularly since the global financial crisis, there has
been an accentuated move towards using ES in bank risk models as international bank
regulation standards (Basel 11I) move beyond VaR. Separately estimating ES in a robust
manner without moment assumptions is challenging (Gneiting, 2011, showed that ES is
not an elicitable risk measure). However, Fissler and Ziegel| (2016) show that VaR and ES
are jointly elicitable, and related or similar backtesting procedures are proposed in|Acerbi
and Szekely (2014), Fissler et al.|(2016), Nolde and Ziegel| (2017), and|Ziegel et al. (2020),

among others. [Patton et al.| (2019) and [Taylor (2019) develop models and estimation

Kuester et al| (2006) extend a CAViaR model by incorporating autocorrelation in the return process and
they do find an improvement in model performance. We include their model as a benchmark in this paper.

Previous authors have also extended CAViaR models by including regressors other than the lags of VaR
(Jeon and Taylor, 2013 Rubia and Sanchis-Marcol 2013} Schaumburg, 2012), although they do not include
multi-horizon returns. |Meligkotsidou et al.| (2019) use combinations of regressors to produce quantile
forecasts and highlight the importance of the information in the past values of the return time series, over
other data.



procedures for jointly estimating VaR and ES. The former derive a scoring function based
on Fissler et al.|(2016) that is homogeneous of degree zero, while the latter shows that this
can be achieved by maximising the log likelihood of the Asymmetric Laplace distribution.
In this paper, we estimate and assess the models using the loss function in Patton et al.
(2019), which we will refer to as FZ0, adopting the label used by its authors.

While estimation strategies generally rely on search-based algorithms, the optimisation
surfaces for quantile estimation are notoriously problematic, requiring many starting
values. We find that estimation works well when we select a relatively small set of starting
values based on a rule that makes the starting values internally consistent (in the sense
that the resulting time series has a stationary mean at the empirical level of the targeted
quantile in sample). We argue in this paper that this approach is of practical value.

In order to assess and compare the models we report various criteria. In keeping with
the literature, we report the out of sample objective function estimates, along with other
tests of unconditional and conditional coverage. In addition, for comparison between
models, we report the results of Diebold-Mariano tests (Diebold and Mariano, [1995)
following the recent literature. We find that our proposed VaR models offer some gains
over benchmarks. Even though there is no single model that performs best across all data
series, we find that in each case one of the models proposed by us tends to outperform the
benchmark CAViaR models. Our findings suggest that introducing long range dependence
in CAViaR models in a parsimonious manner is a valuable improvement.

The rest of the paper is organised as follows. In Section 2] we introduce the model
specifications and in Section[3|we describe the estimation method. In Section 4] we present

and discuss the results of an out of sample comparison of the models. We then conclude



in Section 3l

2. Models

Let {rt}thl denote the univariate time series of portfolio returns. Then the VaR is
given by VaR, = —F;1(9), where § € (0,1) is the specified quantile level, and F,(-)
represents the distribution of r, conditional on time # — 1 information. ES is given by
ES, = —E,_[r|r, < VaR,].

A generic CAViaR model can be specified as follows for the time series of returns

{rt},T=13

M N
qo: (Bo) = Boo + Zﬁe,iqg,z—i (Bo) + Z,Be,/m WV (x¢1) (D
P

J=1

where gy, the fth quantile of r;, is a function parameterised by B, a vector with M + N + 1
parameters. X, contains the data observable at time ¢ (including the history of returns
{rsf_o), and I(-) are functions of lags of the data. The VaR is usually reported as a positive
number, so —gy,, because the 6 of interest for VaR is in the extreme left tail of the return
distributionE] However, in this paper, we refer to the quantile gy, as the VaR so that readers
can view the quantile model in its usual sense. It is clear that the parameter vector By is
specific to the quantile being modelled, and that the series of quantile estimates depend
on the parameters. For the rest of this paper, we adopt a simpler notation by dropping
reference to 6 and the dependence referred to above.

The usual practice is to set M = 1 as models of this order are found to work well

3Patton et al.[(2019) rely on this fact to derive their FZ0 objective function.



for financial time series like the ones considered here. With this assumption and in the
simplified notation, a joint model for both VaR and ES with respect to a given quantile 8

can be written, following Taylor (2019), as

qr = Bo + B1qi-1 + B2l (X121)

e = (1 +exp(y)g; 2)

where ¢, is the ES and y a parameter that helps describe, in a simple but intuitive manner,
the relationship between VaR and ES in the conditional return distribution. This approach
to modelling ES is appealing for several reasons. Firstly, it ensures that there are no
crossings, i.e. the ES is always further out in the tail than the VaR. Secondly, the notion of a
common scale parameter is generally supported by existing research (Engle and Gonzalez-
Rivera, [1991; Xiao and Koenker, [2009; |Gourieroux and Liu, 2012} Taylor, 2019, among
others). Finally, as we are interested in the tail of the return distribution, such as the 1%
VaR and ES, the number of data points that are informative about the relationship between
VaR and ES is quite small - by definition, we should expect 1 hit in 100 observations.
In such a situation, it would be pragmatic to limit the number of parameters that depend
crucially on this subset of observations for estimation.

Engle and Manganelli (2004)) propose four specifications for CAViaR with well known
counterparts in the volatility literature. Of these, three have been widely adopted and
adapted in subsequent research (note they also set u, = 0):

Symmetric Absolute Value (SAV):

qr = Bo + B1gi-1 + Balri-il, 3)



Asymmetric Slope (AS):

q: = Bo + P1q:-1 +,82r,+_1 +B3r,_y, 4)
where the notation employed is: * = max(r, 0) and = = — min(r, 0).
Indirect GARCH (IG):
1
g == (Bo+Bigly +Pariy) . (5)

These models can each be extended to include ES following Equation 2] [Taylor] (2019)
follows this approach, using the SAV and AS specifications. We will adopt the same
method to include ES estimation in all models.

As we have argued, we can also extend these models by allowing for a time varying,
slow moving component in the spirit of Ding and Granger (1996) and |[Engle and Lee

(1999). The resulting models are detailed in the next subsection.

2.1. Component quantile models with multi-horizon returns

We propose models with two components that are motivated by the potential to capture
long range dependence and to achieve a smoother series that could save transaction costs.
We focus on the approach of Engle and Lee (1999)), which has also been applied to option
pricing by (Christoffersen et al. (2008)) and (Christoffersen et al. (2010).

The component versions of CAViaR models that we propose below are written by
reference to the SAV, AS and IG models, by replacing the intercept parameter 3, with
a time varying process that induces a long memory property to the VaR. Consider for

example the AS recursion in Equation 4], which can first be rewritten as:



Gr = u+B1(q—1 — u) + Bor’ | + Bar_, (6)

By allowing u to vary over time, we obtain the Component-AS model (C-ASd):

qr = u + B (q—1 — u—y) +,32r;+_1 + B3r,_,

Uy = B4 + Psus_1 + Peri- )

Similarly, we can define the other two component counterparts.

Component-SAV (C-SAVd):

qr = U + Bi(qi—1 — 1) + B |11l

U, = B3+ Batty—y + Psri-i, (8)

Component-1G (C-1Gd):

o= o

u, = B3+ Patt1 + Psrio )

We also propose the incorporation of multi-horizon returns as regressors in these
models. Our reasoning is developed along the following lines. When we observe that
the VaR from our model has not been exceeded for a long period of time, should we

adjust our model? If so, should the adjustment lead to an increase or decrease in the



VaR? This is a difficult question because it depends on one’s view of the return process
and on the loss function. This also has significant economic implications. Historically,
we have observed that large positive aggregate returns over a long period of time are
followed by large negative shocks. This is not just a liberal interpretation of the adage “The
higher they climb, the harder they fall.” A voluminous literature on bubbles is dedicated to
identifying instances where asset prices have deviated persistently from their true value.
Unfortunately, it is very difficult to precisely quantify how large is ‘large’ for returns and
how long is the ‘long’ period before prices revert. Hence, our approach is simply to
consider the possibility that past returns at lower than daily frequencies contain important
information for risk estimation.

The notion of incorporating information about different horizons has significant
support in the statistics and finance literature. Glosten et al.| (1993)) document that monthly
return volatility dynamics are different from daily dynamics. Bianco et al.| (2009) find that
returns have dependence at different frequencies. [Venetis and Peel (2005) find changes
in the serial correlation in returns based on the volatility. Among those who consider
the impact of different frequencies or horizons in asset pricing are Adrian and Rosenberg
(2008) and Dufhie et al.[(2007). The latter find that future defaults are predicted by one year
lagged stock return performance. Similarly, [Doshi et al. (2013) use past returns among
other variables to find credit default swap prices. The model of Corsi (2009) has been
widely adopted as it has been shown to improve volatility forecasting by incorporating
the history of realised volatility from different horizons. In particular, Hua and Manzan
(2013)) use the HAR approach of (Corsi (2009) in the context of quantile forecasting using

a location-scale model. A simple approach to introduce long memory in our model is

10



through the use of multi-horizon aggregate returns as regressors. Thus, the three versions
of the models with regressors are given below.

Component-SAV multi-horizon (C-SAVdwm):

qr = u + Bi1(qi—1 — ui—1) + B2 |71

Uy = B3+ Pasty + Bsriy + Pory + By, (10)

Component-AS multi-horizon (C-ASdwm):

qr = U + B1(qi—1 — u—1) +ﬁ2rt+—1 +Bar_

U = Ba + Psuy—1 + Peri-1 + Bar) | + Bsr), (11)

Component IG multi-horizon (C-IGdwm)

qr =~ {”? +h (%2—1 - utz—l) +ﬁ2r?—1}%

u; = B3 + Baty—y + Psri +ﬁ6”;‘/_1 +ﬁ77ﬁ], (12)

where ¥ and " represent aggregate returns over the past week (5 days) and month (22

days), respectively.

2.2. Interpreting the component structure

Unlike the traditional approach to writing component models, as discussed in detail
in (Christoffersen et al.| (2008), here we have not attempted to write the model as a

combination of two processes with zero-mean shocks.

11



Let us consider the AS model given in Equation (6). Assuming stationarity, if we take

the unconditional expectation of the quantile, we get:

_ ﬁzF +,83I’__
u=q—- ———,
ER )

where g, r*, and 7~ represent the expectations of the respective variables. Thus, we can

(13)

see that, unlike the traditional approach to writing such models, here u # g. This can also
be seen by substituting u from Equation (T3] into Equation (6) to retrieve a more intuitive

version of the AS model.

G =G+PiGr = +Ba (7 —77) + B3 (riy = 7)

Looking again at the Component-AS model in Equation [/, assuming stationarity and
for simplicity that 7 = 0, we can solve again for the unconditional expectation of the

quantile g and the unconditional mean of the component i:

_ B Port+psr
q_ + ’
1 —Bs 1 -5

Ba

1 =55

where u = u =

Thus, in the proposed component models, the deviation g, — u, is the component
that represents an adjusted distance from the unconditional mean g, while the dynamics
of u, capture the time dependence in ¢, albeit with an adjusted mean level. Our aim
is to introduce longer range dependence in the quantile process via a more persistent
component. As long as the persistence of the component u, is higher than that of g, — u,

we are able to interpret it as a ‘long-term’ component; with the caveat that ¢, tends to a

12



quantity different from u, in the long run.

3. Estimation

We estimate the models by minimising the FZ0 loss function derived by [Patton et al.

(2019)) based on the results of Fissler and Ziegel (2016):

1
Lizo(r,q.€:6) = ===l (@ = 1) + g + log(~e) - 1,

where /(.) is an indicator function. This loss function is also appropriate for out of sample
evaluation of the performance of the models.

The optimisation surface for such problems is known to be multi-modal and generally
problematic to minimise over. We use a relatively small set of starting values (based
on predefined criteria) that take into account the relative scale of the parameters. More
specifically, we select a series of ‘compatible’ parameter inputs. We first pick a grid of
values for the autoregressive parameters in the model and pair each value with values from
a grid of other (news impact) parameters. In each case, we modify the 3, parameter (or the
corresponding constant term in the equation for component models) to be approximately
consistent with the assumption that the quantile process is stationary around the in-sample
unconditional quantile of the data. Note that the parameter is not fixed - it is merely
the starting value for the parameter that is chosen to be internally consistent for each
combination of the other parameters.

For example, in the case of the SAV model in Equation (3), we start by choosing a
range of values for 5y, viz. {0.65,0.8,0.95}. For each of these values, we only pair it with

starting values of 8, € —0.2,-0.1. Using only the in-sample data, we compute g as the

13



relevant 6th empirical quantile of the data. Similarly, we compute the mean of the absolute
value of the data, labelled absr. Assuming stationarity of the quantile time series, we can
then imply starting values for 8, using the formula (1 — 3,)g§ — Bzabsr, for each pair of
values of 3, and 5. Thus, with only 6 sets of starting values, we obtain estimates that are
as good or better than the original approach of evolutionary starting parameter selection in
Engle and Manganelli (2004)ﬂ

Additionally, when we solve for the unconditional mean of a CAViaR process, we
may come across terms that require distributional assumptions, e.g., the expectation of
the ratio of the absolute value returns to a quantile. In such a case, it works well to
simply substitute in quantities based on the normal distribution as a starting point for the

estimation algorithm.

4. Empirical Results

For the empirical exercise, we adopt the three original CAViaR models and two
additional benchmark models that have been shown in the literature to perform well. We
first specify the additional benchmarks, then describe the data used to present comparisons

across the models. Finally, we discuss the out of sample performance of the models.

“To ensure our approach works well, we applied it to the stocks and time period studied in the
original paper by |[Engle and Manganelli (2004). We used the code available from the website of Simone
Manganelli. http://simonemanganelli.org/Simone/Research_files/CAViaRCodes.ZIP and compared it to our
modified approach, with the proviso that we cleaned the data of zero-return days before running the exercise.
In this exercise, we only estimated the VaR using the Realised Quantile (tick loss) objective function. We
found that we obtain a lower RQ using our approach.

14



4.1. Additional benchmarks

The first additional benchmark model (Kuester et al., 2006), which we label as AR-IG,
is included as it allows for serial correlation in returns and performed best among CAViaR
models in a horse race in the same paper.

AR-IG:

g = ary = (Bo + Bi(qio — ar) + Br (1))’ (14)

where «@ is an AR(1) parameter in the return equation, such that g, in Equation () is
replaced by ar,_;. Note that in all other specifications, we retain the norm in the literature
of setting u, = 0.

The second is a model based on the leverage effect formulation of Glosten et al.|(1993),
which we label as IG-GJR. This latter model is similar to ones proposed by |Gerlach et al.
(2011) and Schaumburg| (2012)) and is used to capture asymmetry.

IG-GJR:

a0 = = (Bo+Brdry + Bory + Bt Iy <o) (15)

Finally we consider three popular parametric GARCH-type models (GARCH(1,1),
EGARCH(1,1), and NGARCH(1,1)).

4.2. Data

In order to evaluate the performance of the models, we estimate them on 10 series of
stock indices. These are the S&P 500 (US), Small Cap 2000 (US), DAX 30 (Germany),
FTSE 100 (UK), CAC 40 (France), Euro Stoxx 50 (Europe), S&P TSX (Canada),
Nikkei225 (Japan), Hang Seng (Hong Kong), and ATX (Austria).

15



We compute daily log returns and our only data cleaning exercise is to remove days
when the return is zero as we assume they are holidays. The sample period ranges from
January 01, 2010 to December 31, 2021. From the start of the sample period we retain an
in-sample estimation period of 1304 days (after cleaning the data of zero-return days). As a
result, we reserve the period from May 2015 as the out of sample period, which represents
a time of both up and down markets with varying levels of volatility and includes the
Covid-19 pandemic (see the Appendix for a plot). We roll the sample forward one day at

a time, re-estimating the one day ahead VaR and ES over the out of sample period.

4.3. Performance comparisons

The focus of this analysis is on the out of sample performance of the models, whereby
we present the rolling estimates and the relevant scoring statistics calculated over this
period. Further, in order to keep the presentation clear, we focus on results with 6 = 0.01.
Relative to the 5% quantile, joint estimation of VaR and ES is clearly more challenging at

the 1% level.

4.3.1. Out of sample scores

We first report performance in terms of the loss function estimation in Table [} For
each data series, we rank the models from 1 to 14 in ascending order of their loss function
(FZ0) value out of sample period. We also report the average (across assets) of the average
out of sample FZ0 for each model in the penultimate row. In the bottom row of the table,
we report the average rank for each model. While no single model completely dominates
in performance, the average ranks suggest that two of the component models, C-SAVd and

C-IGd tend to be among the top ranked models for most assets. Overall, the component

16



models have the best ranks, followed by the other CAViaR models. Applying this scoring
rule, it is not surprising that the GARCH models do not perform as well, because the
loss function being minimised in GARCH models is not the same as the one being used to
compare them to the other models. Further, looking individually at the rows, we see that in
each case one of the proposed longer memory models has the best score. This suggests that
there is value in incorporating a component or heterogeneous horizon aggregate returns,

or both, in CAViaR models.

4.3.2. Coverage tests

As is customary, we also report the coverage tests, beginning with the unconditional
coverage rates and the results of the unconditional coverage tests in Table[2] As we have a
relatively large out of sample period, we use the 1% level to determine significance. Most
models are not rejected by unconditional coverage tests, with the only exception being
the C-ASd model. We then present the skill scores relative to the historical simulation
benchmark in Table (3| The historical simulation benchmark is simply the 1% percentile
of the past 1304 returns (window length). To calculate the skill score, we follow [Taylor
(2019) by first calculating the ratio of the score of the target model to that of the historical
simulation benchmark, then subtracting it from 1 and multiplying the result by 100. Thus,

a higher score is better.

17
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We next report the results of a conditional coverage test for the out of sample period
for all assets and models in Table 4] Following|Christoffersen|(1998), the idea behind such
tests is to assess to what extent the hits or exceedances are predictable[] Berkowitz et al.
(2011) suggest that the DQ test of [Engle and Manganelli| (2004) performs relatively well
overall, and we follow them and subsequent literature in performing the DQ test. In the
table, we report p-values of the tests, where a low p-value suggests rejection of the model.
All models perform in line with or better than other implementations in the literature. At
the 1% significance level, each model is rejected for between 1 and 5 out of 10 indices,
with the exception of the C-ASd model that is rejected for most assets. In this case, the

GARCH models perform best.

4.3.3. Forecast comparison

Following Nolde and Ziegel| (2017) and Patton et al. (2019), we next consider results
of Diebold-Mariano tests. Table[5|presents a summary of the tests by counting the signs of
the t-statistics for pairwise comparisons across the 10 assets. The number reported in the
table represents the number of assets for which the column model outperformed the row
model. With the exception of the C-SAVdwm model, the other component models tend
to outperform, and are challenged only by the AS model, suggesting that asymmetry is a
key feature to include. In the interest of completeness, we provide the actual test statistics
for all pairs across all assets in Here, we can see that while most results in

favour of the component models among themselves and against the benchmark CAViaR

SRegulators also consider failure rates (hit ratios) of own-model VaR forecasts of financial institutions to
assess their reliability. All models appear to be within a reasonable range when compared to the failure rates
that attract the attention of regulators in terms of requiring higher capital.
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models are statistically significant, this is not necessarily the case for the GARCH models.
The GARCH models appear to have a large number of inferior statistics, but these tests are
not statistically significant in the majority of cases. Thus, GARCH models tend to hold
their performance in forecast comparison tests, although the summary table does not show

this.

4.3.4. Excess losses

A further analysis that we conduct is to assess whether the models indeed assist in
avoiding costly recapitalisations, as per the motivation. To this end, in Table[6| we examine
the losses on exceedance days (when VaR is exceeded by the loss). We calculate the
absolute value of the difference between ES and the return on all exceedance days and
then report its mean, times 1000. A larger number signifies that greater capital mismatches
arise on these dates. A similar exercise, looking only at the losses when they exceed the
ES has similar results. With the exception of the DAX index, the best model in each row
is one of the component models, suggesting that there may be some benefit in reducing
capital shortfalls if we take long range dependence features into account.

Thus, to summarise the empirical analyses, the overall comparisons provide evidence
of the potential for improving the financial performance of CAViaR models by
incorporating longer memory features. The out of sample scores show clear gains from

considering longer term dependence.
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5. Conclusion

We propose and evaluate CAViaR models that have long range dependence features
through the introduction of a component structure. The inclusion of past aggregate returns
at heterogeneous horizons as regressors in the component process serves to capture the
possibility of lower frequency data being informative in predicting extreme risks. In the
sense implied by [Hanson et al.| (2011)), our approach is guided by making micro-prudential
methods more consistent with macro-prudential goals. Finally, we introduce a simple
practically useful approach to selecting starting values for parameters in the estimation
algorithm. Our approach is to ensure the starting values are approximately compatible with
each other in the sense that they are consistent with stationarity of the quantile process.

The models are motivated by the need to allow VaR to change steadily while taking into
account variation in the underlying mean level of VaR. The intuition behind this motivation
is that it may assist in controlling transaction costs and in reducing the severity of the
extreme losses (relative to VaR) when VaR is exceeded.

By analysing a particularly challenging period that covered the Covid-19 pandemic,
we have provided more evidence that CAViaR models in general are good at capturing
the underlying quantile process. Although our models introduce more parameters, they
perform very well out of sample, pointing to the usefulness of considering long range

dependence among modelling choices for CAViaR models.
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Appendix A. Index levels over the data sample
450 -

—S&P 500

——RUSSELL 2000

——NIKKEI 225
DAX 30

—CAC 40

| —S&P/TSX

—ATX

—EURO STOXX 50

—FTSE 100

—HANG SENG

01/01/2010

01/01/2011 F+
01/01/2012 +
01/01/2013 +
01/01/2014 +
01/01/2015 +
01/01/2016 +
01/01/2017 +
01/01/2018 T+
01/01/2019 +
01/01/2020 +
01/01/2021 +

Note: Plot of index levels with Jan 01, 2010 set at 100 for all indices. We can see that all indices
went through extreme price movements, but with a certain degree of heterogeneity across indices.

The shaded zone represents the out of sample period.
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