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Abstract: We study whether and when Research and Development (R&D) activities by foreign 
multinationals help in the formation and development of new innovation clusters. Combining 
information on nearly four decades worth of patents with socio-economic data for regions that 
cover virtually the entire globe, we use matched difference-in-differences estimation to show that 
R&D activities by foreign multinationals have a positive causal effect on local innovation rates. 
This effect is sizeable: foreign research activities help a region climb 14 percentiles in the global 
innovation ranks within five years. This effect materializes through a combination of knowledge 
spillovers to domestic firms and the attraction of new foreign firms to the region. However, not 
all multinationals generate equal benefits. In spite of their advanced technological capabilities, 
technology leaders generate fewer spillovers than technologically less advanced multinationals. 
A closer inspection reveals that technology leaders also engage in fewer technological alliances 
and exchange fewer workers in local labor markets abroad than less advanced firms. Moreover, 
technology leaders tend to set up their foreign R&D activities in regions with relatively low
absorptive capacity. We attribute these differences to that fact that the trade-off between costs 
and benefits of local spillovers a multinational faces depends on the multinational’s technological 
sophistication. This illustrates the importance of understanding corporate strategy when analyzing
innovation clusters. 
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Introduction
Cross-border Research and Development (R&D) investments have expanded drastically in recent years. 

Between 2003 and 2017, the number of investment projects and the capital invested roughly doubled.4

Cities and regions compete fiercely over such projects, in the hope that they will create high-quality jobs, 

accelerate the development of local innovation capabilities and put the region on the map as a recognized 

center of technological excellence. However, all too often this calculus overlooks that the multinational 

enterprises (MNEs) behind these investments may have few incentives to share their know-how with local 

firms. On the contrary, technologically advanced firms have much to lose, and little to gain, from local 

knowledge spillovers. It is therefore a priori unclear if, and under which conditions, attracting MNEs will 

help upgrade a location’s technology base. In this paper, we therefore study whether and when research 

activities by foreign firms trigger the emergence of new centers of technological excellence. 

We hypothesize that R&D facilities of foreign MNEs can create spillovers to the local economy that set in 

motion a process of collective learning (Athreye and Cantwell, 2007; Fu, 2007; Phelps, 2008; Ning et al., 

2016; Blit, 2018). However, just because firms are willing to invest abroad to access knowledge assets 

outside their home regions (Phelps and Fuller, 2000; Belderbos et al., 2011; Crescenzi et al., 2014), they do 

not necessarily want to share their own knowledge assets with potential competitors. On the contrary, 

several authors (Shaver and Flyer, 2000; Cassiman and Veugelers, 2002; Alcacer and Chung, 2007) have 

argued that firms value inward spillovers to learn from others, but consider outward spillovers through 

which their own knowledge leaks to competitors to be costly. This cost-benefit tradeoff will depend on the 

knowledge gradient between firms. Although technology leaders may in principle be able to generate large 

knowledge spillovers, they have least to gain and most to lose from them. Therefore, technology leaders 

may try the hardest to prevent leaking their know-how to competitors. In contrast, for companies further 

down the technological ladder the balance may tilt in favor of engaging more fully in mutual local learning 

processes. Therefore, to understand how MNEs affect local learning, we need to consider the strategic 

tradeoffs these companies face.

We apply this conceptual framework to data from the United States Patent and Trademark Office (USPTO).

We identify all inventors who file patents on behalf of firms headquartered in a foreign country. We take 

the emergence of such patents in a location to signal that a foreign firm has developed R&D activities there.

We consider these events as ‘treatments’ to the local economy. We limit the analysis to treatments by 

foreign firms whose headquarters are located in the technologically advanced economies of the OECD to 

                                                            
4 Own calculations based on fDi Markets data (Financial Times) for FDI Projects in the following ‘innovation functions’ (Crescenzi 
et al., 2014; Sturgeon, 2008): ‘Design, Development & Testing’; ‘Education & Training’ and ‘Research & Development’. 
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focus on knowledge diffusion from frontier to technologically less advanced economies. Next, we contrast 

regions with and without such treatments in a matched difference-in-differences estimation design to assess 

the causal impact of foreign firms on a region’s innovation rate.

Over a 5-year period, patenting rates in treated regions increase by roughly 0.13 log-points more than in 

untreated regions. As a consequence, treated regions climb, on average, 14 percentiles in the global 

innovation ranks. This increase is in part attributable to local knowledge spillovers: the entry of a foreign 

MNE causes an increase in patenting by domestic firms. Another part is due to signaling effects: the fact 

that the MNE is able to produce patentable inventions in a region proves to other foreign firms that the 

region is capable of supporting high-tech R&D activities, attracting further foreign R&D activities.

However, not all foreign firms increase local innovation rates equally. Contrary to expectations raised in

existing scholarly work (e.g. Harris and Robinson, 2003; Haskel et al., 2007) and in parts of the mainstream 

policy discourse on Foreign Direct Investment (FDI) (What Works Centre, 2019), technology leaders are 

not the main drivers of technology diffusion. On the contrary, the arrival of technology leaders generates 

fewer spillovers to a local economy than the arrival of MNEs that rank lower in their technology field’s 

patenting distribution. A closer inspection of some of the channels through which knowledge spillovers 

materialize corroborates this conclusion. Foreign technology leaders engage in fewer local alliances and 

exchange fewer workers with local firms than lower-ranking MNEs. Instead, they rely more on their 

headquarters as a source of labor and see their patents cited less frequently by local firms. Finally, 

technology leaders locate disproportionally in regions with comparatively limited absorptive capacity

(Cohen and Levinthal, 1990).

These results highlight that understanding the evolution of innovation clusters requires an account of the 

heterogeneous incentives of key actors in such clusters. The strategic motivations behind MNEs’ sub-

national location decisions have been studied extensively in economic geography, international economics 

and international business. However, insights from these streams of research have not been fully absorbed 

into the literature on innovation clusters. Conversely, international economics and business scholars 

traditionally focus more on FDI and MNEs themselves than on how they impact regions and clusters. By 

drawing insights from across these strands of the literature, we contribute to a number of existing debates. 

First, our study adds to our understanding of cluster emergence and evolution (Feldman and Braunerhjelm, 

2006; Menzel & Fornahl, 2010). Second, our findings relate to the discussion on knowledge spillovers in 

local economies (Glaeser et al., 1992; Henderson, 1995; Jaffe et al., 1993). Third, these findings are related 

to the work on how knowledge diffuses through the mobility of firms and people (Fosfuri et al., 2001; 

Saxenian, 2007; Javorcick, 2004; Breschi and Lissoni, 2009; McCann and Acs, 2011; Crescenzi et al., 2015;

Bahar and Rapoport, 2018). In this sense, our work is closely related to Blit (2018), who shows that firms 
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located in the countries of an MNE’s R&D satellites disproportionally cite patents filed at the MNE’s 

headquarter location. Fourth, by highlighting the importance of firms’ strategic motivations, our study links 

the work on actors of change in economic geography (Isaksen et al., 2018; Neffke et al., 2018) to the 

literature on location choice. Fifth, our analyses complement the literature on spillovers from FDI, as 

surveyed in, for instance, Keller (2004). However, unlike most of this literature, we focus on effects on 

innovation, not productivity. Finally, our work informs policy debates on (regional) middle-income traps 

(Aghion and Bircan, 2016), suggesting that certain types of FDI can remedy such traps.

Stylized facts and conceptual framework

Stylized facts on the global geography of innovation
Participation in the global innovation contest is a privilege reserved for only a handful of regions. Figure 1 

(left) shows population-weighted spatial Lorenz curves for income (dashed curve) and patenting in 2005. 

The dotted curve depicts total patenting output, the solid curve excludes patents by US inventors. The 

already high spatial concentration of global income pales against the concentration of innovative activity:

in 2012, the ten most innovative regions in the world together accounted for 39% of all patents and for 45%

of patents filed by inventors outside the US.

The distribution of innovative activity is not only skewed, it also hardly changes over time. Figure 1 (right) 

shows regions’ patenting output in the period 1994-2012 against the period 1975-1993. Most regions are 

on or close to the 45-degree line, implying that few regions manage to forge ahead or fall behind. However, 

some positive exceptions exist, highlighted by the triangular overlay. These regions accelerated their patent 

production and rose in the world’s innovation ranks. Conceptually, they form the motivation for our study. 

Figure 2 shows where such new centers of technological excellence have emerged. It displays the global 

geography of innovation as expressed in USPTO patents in 1975 and 2012. Patenting rates have most 

prominently accelerated in Korea, Taiwan, India and China, and to a lesser extent in Eastern Europe, Canada 

and Israel.
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Figure 1: Inter-regional inequality of income and innovation and stability of regional innovation ranks

Notes: Left: Population weighted spatial Lorenz curves of patent and income shares for the year 2005. Shares of patents are 
unweighted counts of USPTO patents assigned to inventors residing in each region. Regional population data come from Gennaioli 
et al. (2014). Right: Stability of regional innovation ranks. Circles represent one of the 1,549 regions in the dataset. Circles’ sizes 
are proportional to average regional GDP over the period 1975-1993. Horizontal axis: number of patents filed between 1975 and 
1993. Vertical axis: number of patents filed between 1994 and 2012. Colors refer to World Bank macro regions.

Figure 2: Patents in 1975 and 2012, by region

1975

2012

Notes: Total number of patents filed with the USPTO in 1975 and 2012 by region of residence of their inventors. Countries for 
which regional data is missing are colored gray even though a small number of inventors resides in these countries.
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Conceptual framework and hypotheses
How new innovation clusters emerge is a topic of substantial debate. Some authors stress factors 

endogenous to the region. For instance, Feldman and Braunerhjelm (2006) point to entrepreneurial 

experimentation and local policies aimed at creating and maintaining a strong local knowledge base. Others 

point to the same Marshallian externalities (Marshall, 1890) that also drive the success of traditional 

industrial clusters or to face-to-face interactions among local firms and institutional actors that help 

reproduce at a systemic (i.e., cluster) level the organic learning processes otherwise confined to learning 

within individual firms (Storper and Venables, 2004).

However, globalization of R&D has added an extra layer of complexity to this discussion. As the global 

body of knowledge grows, it becomes increasingly distributed across people and places (Neffke, 2019). 

Under such conditions, clusters must combine their local ‘buzz’ with ‘global pipelines’ (Bathelt et al., 

2004). These pipelines help a cluster tap into knowledge bases outside the region and mitigate against 

cognitive lock-in. They can be sustained by various types of global actors, from Diasporic Communities 

(Saxenian, 2007), to universities, star scientists (Zucker et al., 1998) and MNEs (e.g., Blomström and 

Kokko, 1999; Javorcick, 2004; Haskel et al., 2007; Keller and Yeaple, 2009; McCann and Acs, 2011; 

Crescenzi et al., 2015). 

Our analysis will focus on these latter actors, MNEs. With their networks of R&D facilities, MNEs 

represent strong conduits for the diffusion of advanced technological know-how (Athreye and Cantwell, 

2007). We therefore expect that cross-border R&D investments by MNEs help a region acquire new 

technological capabilities, providing the seed for new innovation clusters. This suggests the following 

hypothesis:

Hypothesis 1: The development of R&D activities by foreign MNEs in a region leads to an increase 

in local patenting rates by domestic firms.

MNEs can also act as anchor firms. Anchor firms (Agrawal and Cockburn, 2003; Feldman, 2003) “attract 

skilled labor pools, specialized intermediate industries and provide knowledge spillovers that benefit new 

technology intensive firms in the region” (Feldman, 2003: 312). Moreover, anchor firms generate strong 

demonstration effects. When foreign MNEs innovate with local inventors, they manifest that adequate 

knowledge resources are present, aiding regional “self-discovery” (Hausmann and Rodrik, 2003). We 

hypothesize that these demonstration effects attract further MNEs to the region:

Hypothesis 2: The development of R&D activities by foreign MNEs in a region attracts further 

MNEs that raise local innovation rates by setting up their own R&D activities.
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However, spillovers from FDI are by no means automatic (Blomström and Kokko, 1999; Liu and Buck, 

2007). To “[diffuse] knowledge and enhance collective learning in clusters” (Giuliani, 2007: 140), intra-

and inter-firm international networks must become embedded in a region’s local networks (Maskell and 

Malmberg, 1999). This raises an important, yet often ignored, question: Do foreign firms have an incentive

to participate in local innovation networks?

One incentive for MNEs to invest abroad is that it allows them to access knowledge assets in other locations 

(Cantwell, 2005). This yields several benefits: by internationalizing their R&D activities firms can bring 

products to market faster (Von Zedtwitz and Gassmann, 2002), hire global talent at reduced costs (Lewin, 

Massini and Peeters, 2009), and tap into foreign centers of technological excellence (Cantwell and Janne, 

1999). However, even if MNEs set up R&D centers abroad to tap into local knowledge and know-how – a

strategy known as strategic asset seeking – this does not necessarily mean that they desire to engage in 

reciprocal collective learning. On the contrary, firms balance the benefits from inward knowledge spillovers 

with the costs of outward spillovers – i.e., of knowledge leaking to competitors (Shaver and Flyer, 2000; 

Cassiman and Veugelers, 2002). Alcacer and Chung (2007) therefore posit that MNEs try to maximize, not 

spillovers per se, but net spillovers. Because technology leaders have least to gain and most to lose from 

local knowledge sharing, they may not create many spillovers, in spite of their advanced knowledge assets.

We therefore hypothesize:

Hypothesis 3: The more technologically advanced the foreign MNE, the smaller the spillovers to 

the local economy will be.

If technology leaders indeed generate fewer spillovers, we would expect to find further evidence for this in 

the channels through which knowledge is transmitted between MNEs and local firms, such as local labor 

circulation (Song et al., 2003; Singh and Agrawal, 2011) and R&D collaborations. Furthermore, we would 

expect to find fewer traces of knowledge spillovers in patent citations. This yields the following set of 

hypotheses:

Hypothesis 4: Ceteris paribus, technologically more advanced foreign MNEs (4a) exchange fewer 

R&D workers with local firms, (4b) engage in fewer technological collaborations with local firms 

and (4c) are less often cited as a source of know-how by local firms. 

Why would technology leaders be better able to curb knowledge spillovers than others? On the one hand, 

technology leaders may be better positioned to do so than other firms. For instance, they may be able to pay 

higher salaries or use more sophisticated legal means to keep key R&D workers from leaving the firm.

Technology leaders can also substitute for external collaborations by leveraging advanced internal 

knowledge assets through their own corporate networks (McCann and Mudambi, 2004). On the other hand,
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technology leaders can use their location decisions strategically to curtail spillovers. In line with this, 

Alcacer and Chung (2007) show that technologically advanced firms are more likely to avoid the vicinity 

of highly competent competitors than less advanced firms are. Under such circumstances, spillovers are 

kept at bay because there simply are few opportunities to hire workers from, or collaborate with, local firms.

Although our data do not allow us to determine the full range of strategies technology leaders may employ 

to block outward spillovers, we can observe their location choices. We expect that advanced MNEs will 

locate their R&D activities in places with low absorptive capacity and less well-established innovation 

systems to mitigate risks of accidental knowledge spillovers by. This leads to the following hypothesis:

Hypothesis 5: More technologically advanced foreign MNEs will locate disproportionately in less 

developed locations.

Empirical methodology
Saxenian (2007) describes how some of the most prominent new centers of technological excellence 

originated with the help of foreign actors who connected these new locations to existing technology centers.

Figure 3 corroborates this. It takes for each macro region of the world the location farthest above the 45-

degree line of the right panel of Figure 1 and then shows how its patenting output evolved over time. Dashed 

vertical lines mark the first local patent assigned to a foreign MNE.

In most graphs, accelerations in innovation rates are preceded by a patent assigned to a foreign firm. Like 

Saxenian’s case studies, these graphs first identify successful regions and then look for traces of foreign 

research activities in their past. However, this strategy risks selection bias. To avoid such bias we will 

identify all regions where foreign MNEs file patents with local inventors, regardless of whether they ever 

become successful innovation centers. Next, we compare growth paths of regions with such foreign R&D 

activities to otherwise similar counterfactual development paths in regions without foreign R&D activities.
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Figure 3: Patent accelerations

Notes: Patenting output for region-technology cells with the largest growth in patenting rates. Titles list the name of the region and 

the broad technology class. Dashed vertical lines indicate the cell’s first patent assigned to a foreign MNE. 

Data
We use data on 6.0 million patents granted by the USPTO between 1975 and 2015 from PatentsView.5 This 

datasets covers 3.6 million unique inventors with their geocoded places of residence and 314,366 unique 

primary assignee identifiers. We date each patent by its application year, not the year in which it was 

granted. Because the USPTO publishes patents with a processing lag, we limit the analysis to patent 

applications filed before 2013. Next, we assign all patents to one of 1,549 regions. This allows us to add 

data on GDP per capita at the national and regional levels, average years of education and population size 

taken from Gennaioli et al. (2014). Together, these regions cover 97.2% of all USPTO patents. Online 

Appendix A describes both datasets in detail.

                                                            
5 https://www.patentsview.org 
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Relying on patents as a measure of regional innovation output has some well understood limitations. (e.g, 

Archibugi, 1992; Crescenzi, et al., 2017). For instance, patents only capture patented innovations, and their 

efficacy and use in protecting intellectual property varies across firms and sectors. Moreover, not all 

patented inventions are equally valuable and not all inventors contribute equally to an invention. Therefore, 

raw patent counts represent only a rough and possibly biased approximation of the technological 

capabilities of firms and regions.

In spite of these limitations, the USPTO patent database offers a unique lens on the internationalization of 

knowledge production. Its long coverage allows us to explore the emergence of new technology centers 

over the course of several decades, as well as the firms and inventors involved therein. Moreover, because 

the US represents the largest market in which firms can protect their intellectual property for most of the 

period under study, firms anywhere in the world have strong incentives to file their inventions with the 

USPTO. Finally, because patents are filed for the same market and with the same patent office, our data are 

highly comparable across regions and countries. However, because protecting inventions in the home 

market may be qualitatively different from protecting inventions in foreign markets, we exclude US regions 

(but not US firms!) and focus on new technology centers that emerge outside the US. This leaves patent 

data for 922,459 inventors, 25.6% of the total number of inventors.

Defining foreign research activities
To identify foreign research activities, we select all patents whose inventors reside in a different country 

than the assignee’s primary research location. These patents are considered as signs of foreign research 

activities. To determine an assignee’s primary research – or home – location, we do not use the location of 

its headquarters as listed in PatentsView, but the modal country of residence of its inventors. This ensures 

that we identify the country in which an assignee carries out most of its R&D, not where it located its legal 

headquarters. For instance, we reclassify the phone maker ZTE from an American to a Chinese firm and 

the home furniture group IKEA from a Dutch to a Swedish firm. For sake of brevity, we will still refer to 

these primary research locations as companies’ headquarters. Furthermore, we only use private-sector 

patents, excluding patents assigned to government agencies such as the US Navy, the American Air Force

or the French Commissariat à l'énergie atomique. Finally, we limit the analysis to foreign R&D activities 

by firms based in the OECD, using the organization’s 1985 composition.6 This allows us to concentrate on 

                                                            
6 That is: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Great-Britain, Greece, Iceland, Ireland, Italy, 
Japan, Luxemburg, The Netherlands, New-Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey and the United States. 
Because there are also lagging regions in OECD countries, we do include OECD regions among the potential hosts of foreign 
research activities. 
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knowledge diffusion from frontier to lagging regions. Moreover, it ensures that foreign research activities 

in different regions involve similarly advanced countries of origin. 

We consider the first foreign patents, i.e., patent applications by local inventors but assigned to foreign, 

OECD-based, firms, as “treatments” to a technology in a region, where technologies refer to one of the 37 

technological subcategories in Hall et al. (2001). Therefore, our sample in principle consists of all 

combinations of 1,549 regions and 37 technological subcategories, or 57,313 region-technology “cells”. 

However, we drop all cells that had already hosted foreign R&D activities between 1975 and 1985. In the 

remaining cells, we record all patents filed by local inventors, from five years before to five years after a 

treatment. This limits our study to treatments between 1985 and 2007, as depicted in Figure 4. 

Figure 4: Timeline of treatments

Notes: Data are available for patents filed between 1975 and 2012. The first ten years of this period are used to identify which 
region-technology cells are untreated, i.e., had no local patents assigned to foreign firms. For each treatment, we require an 
observation window from five years before to five years after the treatment.

Do these treatments coincide with actual FDI in a region? To verify this, we match treatments to firms in 

ORBIS using patent identifiers. ORBIS is a commercial database with information on some 200 million 

private companies worldwide. For nearly half (48.6%) of our treatments, we were able to find 

corresponding company branches in the ORBIS dataset in 2017. This match rate is high, given that ORBIS

only covers company branches that are currently active, does not maintain a record of patents’ previous 

owners if patents are sold and has incomplete coverage in some countries.

To get a sense of how accurately we capture the timing and size of the investments associated with 

treatments, we also match treatments to greenfield R&D investment projects recorded in fDi Markets 

between 2004 and 2012. The fDi Markets database does not contain patent identifiers. We therefore match 

on company names instead. This allowed us to find investment projects for 173 (5.85%) treatments. The 

median of these treatments is associated with an investment of US$ 37.3 million and the creation of 207 

jobs. However, this likely exaggerates the size of the typical treatment given the fDi Markets’ bias towards 

large investment projects. Furthermore, we find that investment projects predated treatment patents by, on 

average, 1.7 years. This suggests that our treatments trail investments by between one and two years, which 
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is reasonable given the expected time it takes for these investments to bear fruit. However, given that 

knowledge spillovers will also not be instantaneous, in practice we expect that treatment effects would 

emerge around the time we observe the filing of the foreign treatment patent.

Dependent variable
Our variable of interest is the patenting output by inventors who claim a region as their place of residence.

If a patent lists multiple inventors living in multiple regions, we attribute a fraction #     #   to each region. Moreover, we focus our analysis on spillovers from treatment 

firms to other firms in a region-technology cell. We therefore disregard all patents assigned to “treatment 

firms”: foreign firms to which the treatment patent was assigned.

To reduce distributional skew in a variable that equals zero in many cells and scales exponentially as 

regions’ innovativeness increases, we use the Inverse Hyperbolic Sine (IHS) of a cell’s patent count:

= ln 12 + 1 +
where represents the fractional count of patent applications filed in technology field in year by 

inventors residing in region . The advantage of this metric is that, unlike ln(0), (0) is well-defined,

while the IHS rapidly approximates the natural logarithm: for  3, the difference between ln and ( ) is below 2.5%.

Causal effects of foreign research activities
Foreign firms may not only help regions develop technological capabilities, they may also be attracted by 

such capabilities. As a consequence, the direction of causation between attracting FDI and developing 

technological capabilities is, a priori, unclear. To address this problem, we combine matching with 

difference-in-differences estimation. That is, we first select for each treated region-technology cell a set of 

untreated cells with otherwise similar characteristics. These matched cells offer counterfactual development 

paths for how the treated cells would have fared, had they not been treated. Next, we study whether the 

performances of treated and control cells diverge after the treatment.

The matching exercise uses a mixture of propensity score and exact matching. First, we estimate a cell’s 

propensity to be treated using a probit regression with as explanatory variables the average years of 

education in the region and country, the region’s population size, and several lags of country-level and 

region-level GDP per capita. The latter provide a flexible way to control for trends in income growth, which 

should in principle capture all improvements in a region’s capability base that are directly relevant to its 

productivity. Next, we select up to five counterfactual cells in the exact same year and technology 
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subcategory with propensity scores closest to the treated cell’s. Finally, we require that treated and non-

treated regions do not belong to the same country. This ensures that counterfactual cells are not treated 

indirectly, through within-country spillovers.

In a second step, we perform difference-in-differences estimation, using the following equation:= + + + + (1)

where represents region-technology fixed effects, a dummy for whether or not a region-technology 

cell was treated and year fixed effects. The parameters of interest are collected in . encodes event 

time, and runs from -5 to +5, i.e., from five years before to five years after foreign research activities emerge 

in the patent data. They express the difference in average innovation output between treated and non-treated 

cells in each year. We report these coefficients graphically in Figures 5 and 6.

Note that we do not match cells on their pretreatment patenting performance. Therefore, before the 

treatment, patenting trajectories of treated and non-treated cells could be markedly different. If instead these 

pretreatment trajectories are indistinguishable, i.e., if 0 for < 0, this is a strong indication that the 

matching framework yielded adequate counterfactuals. Under such conditions, we will therefore consider 

the estimated treatment effects (i.e., the parameters for > 0) to be causal.

Findings

Difference-in-differences estimations
In total, we identify 5,731 treated region-technology cells, i.e., cells in which the first foreign research 

activities are detected between 1985 and 2007. This number drops to 3,134 after we exclude cells outside 

the matching support and cells without sufficiently close counterfactuals, based on a caliper of 0.0002. At 

this caliper, treated and non-treated cells have similar pretreatment trends. Stricter calipers do not yield 

improvements, but lead to less precisely estimated effects. On average, we add to each of these treated cells 

observations on 2.35 control cells.

Table 1 shows compares some key variables between treated and non-treated cells. Treated cells are on 

average substantially richer and more educated than non-treated cells. This corroborates our concern that 

foreign firms may be attracted to regions with advanced technological capabilities. Matching improves the 

balance between treated and non-treated cells for most variables, although some differences remain.

Table 1: Balance on observables

Before matching After matching
Variable Treated Control t-stat Treated Control t-stat
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N=5,731 N=4,302 N=3,134 N=7,369 T-stat

Country
GDP/cap (2005 USD) 20,310 17,830 5.06 20,740 19,320 3.43
Average yrs of education 8.66 8.36 3.53 8.58 8.46 1.67
3-year av GDP/cap growth 2.53% 2.54% -0.07 2.42% 2.61% -2.71

Region
GDP/cap (2005 USD) 19,350 16,370 6.06 19,410 17,940 3.89
Average yrs of education 8.62 7.92 6.77 8.5 8.38 1.38
3-year av GDP/cap growth 2.41% 2.47% -0.55 2.32% 2.44% -1.66

Notes: Treated cells are region-technology combinations where a foreign OECD-based firm starts patenting with local inventors 
between 1985 and 2007. The matched samples only retain matched treated and non-treated (“control”) cells. The reported averages 
refer to the year preceding the treatment year for treated and matched controls and to 1996 –the year preceding the average treatment 
year – for cells in the non-treated column. GDP per capita is measured in 2005 Purchasing Power Parity (PPP) terms, and years of 
education are counted from primary school onward, for the population 15 years and older.

These differences prove inconsequential for our difference-in-differences estimates, (Figure 5). This is 

reflected in the fact that, before treatment, patenting output does not differ significantly between treated 

and non-treated cells. However, after the treatment, patenting rates in treated cells start outpacing the ones 

in non-treated cells. After five years, the local fractional patent count in treated cells exceeds its 

counterfactual by, on average, 0.15 IHS points. Using the natural logarithm to approximate the IHS, this 

means that patent counts in treated regions are about 16% (e . 1 = 0.161) above their counterfactuals.7

Figure 6 compares the effect on total patenting output in treated regions to the effect on patenting output

by domestic firms only. The figure first replicates Figure 5, where the dependent variable is the IHS of all 

patents in a region, regardless of whether they were filed by domestic or foreign firms. This curve is shown 

in grey. The second curve plots the effect on local patents that were assigned to domestic firms only. This 

second curve isolates the effect of spillovers to the domestic economy.

                                                            
7 Note that this excludes patents filed on behalf of the treatment firm itself. If we include these patents, the effect increases by 
29 percentage points (pp) in t=1, 23 pp in t=2, and 12 pp in t=3. Treatment effects in t=4 and t=5 are all but unchanged, suggesting 
that the treatment firm’s own contribution is limited in the longer term. 
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Figure 5: Difference-in-differences estimates: all local patents

Notes: Difference-in-differences estimates, . These estimates reflect the differences in the IHS of fractional patent count between 

treated and control cells in the matched sample of 3,134 treated and 7,369 control cells. Vertical lines depict 95% confidence 

intervals, using standard errors clustered by region. Point estimates that are statistically significantly different from zero (p = 0.05)

are shown in orange, insignificant point estimates in blue.

Figure 6: Difference-in-differences estimates: patents by domestic firms

Notes: Idem Figure 5 for patenting output by domestic firms. Estimates of Figure 5 in grey for comparison.

The spillover effect, i.e., the effect on domestic patenting, is substantially smaller than the total effect.8 Five 

years after the treatment, patenting rates by domestic firms in treated regions lie just 0.0635 IHS points,

                                                            
8 Note that the pretreatment trends are the same in both curves by construction: we imposed that neither treated nor control 
regions host foreign research activities before t=0. 
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about 7%, above those in non-treated regions. This corroborates Hypothesis 1: when foreign MNEs start 

R&D activities in a region, patenting output by domestic firms tends to rise.

The difference between the treatment effects on total patenting and on domestic patenting must be attributed

to further foreign firms following the treatment firm into the region. This can be interpreted as a signaling 

effect: the entry of the first foreign MNE signals to other foreign firms that it is possible to successfully 

develop R&D activities in the region. This signaling effect is larger than the spillover effect. Of the overall 

effect of 16%, only 7% is due to increased patenting by domestic firms. The remaining 9% consists of 

elevated patenting by foreign MNEs.9 This corroborates Hypothesis 2: the entry of foreign MNEs attracts

further foreign entrants who contribute to a region’s patenting output.

Heterogeneity in treatment effects
Do all treatments yield similar spillovers? To explore this within a difference-in-differences framework, we 

would need to estimate separate difference-in-differences curves for different subsamples. The modest 

number of treatments in our sample makes such a strategy impractical. Instead, we exploit the fact that the 

difference-in-differences graphs break down into a flat part until the treatment year and a more-or-less 

linear increase thereafter. This suggests that we can collapse the data into a period before and after the 

treatment and estimate the following cross-sectional regression equation:= + + + +
where = represents the growth in the IHS of patenting in region and technology 

from one year before to five years after the treatment and matrix includes control variables. The 

treatment dummy, , is interacted with various variables, collected in the matrix , that describe a cell’s 

macro-region, technology or treatment firm. This allows exploring heterogeneity in treatment effects along 

these dimensions.

Table 2 summarizes results. Uneven columns report the effect on total patenting, even columns on patenting 

by domestic firms. All models control for all variables used in the propensity scores calculations, as well 

as for year and country fixed effects. The first two columns show that foreign research activities increase 

overall patenting output by about 14% five years after the treatment.10 The effect on domestic firms’ 

                                                            
9 That is not to say that the treatment effect on patents of foreign firms is 9%. Because, by definition, before treatment the 

number of patents assigned to foreign firms is zero, this effect does not exist. Given that the total effect is = +1.16, we have: 1.16 1.07 = 0.09. Patenting by foreign firms thus raise the treatment effect by about another 

9 pp. Due to Jensen’s inequality, the effect will in fact be somewhat larger. 
10 Treatment effects are calculated as 1, where  the treatment effect. Note that for small  1 . 
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patenting is just 6%. The difference between the two estimates is due to patents filed by local inventors on

behalf of other foreign firms that entered the region.

Columns 3 and 4 interact the treatment dummy with macro-region dummies. Treatment effects are strongest 

in East Asia and in the omitted category, Europe and Central Asia. Here, foreign research activities increase 

overall patenting by 23% and 11% respectively and patenting by domestic firms by 13% and 4%. Point 

estimates for South Asia are also large, but imprecisely estimated. In contrast, cells in the MENA region

experience no significant treatment effects.

Columns 5 and 6 interact the treatment dummy with dummies for six broad technology classes, with “other” 

as the base category. Large and significant treatment effects exist in medical, electrical and computer 

technologies. 

Finally, we identify all treatments by firms who are technology leaders. To do so, we count the number of 

patents filed between 1975 and 1985 on behalf of each firm in our dataset. Firms ranked in the top 5% for 

this count in their technology category will be considered technology leaders. Tables B.1-B.6 in Online 

Appendix B list ten technology leaders for each of six aggregate technology categories. To contrast 

technology leaders to other foreign MNEs, we create two further classes: firms in the 6th-19th percentile and 

firms in the bottom 80% of their technology class. 

Although technology leaders arguably have most to offer in terms of technological know-how, their 

treatments affect local innovation rates significantly less than those of lower-ranking firms. The treatment 

effect on overall patenting (column 7) halves when the treatment firm is a technology leader compared to 

treatments by mid-tier firms or firms at the bottom of the patenting distribution. These differences are even 

more striking when focusing on patenting by domestic firms (column 8). Whereas foreign firms at the 

bottom of the patenting distribution raise domestic patenting rates by about 9%, technology leaders generate 

no such spillovers whatsoever. This difference in treatment effects barely changes when all interaction 

terms enter the model simultaneously (columns (9) and (10)). This corroborates Hypothesis 3: The more 

advanced the MNE, the smaller the spillovers to the local economy are.
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Spillover channels
If it is true that technology leaders generate fewer spillovers than lower-ranking firms, we should be able 

to corroborate this by looking at spillover channels and patent citations. Below, we focus on two well-

known channels through which knowledge spillovers materialize: technological alliances and labor 

circulation. Next, we look at citation patterns. Finally, we analyze the location choices of foreign firms.

Alliances
Do technology leaders engage in fewer local alliances abroad than lower-ranking MNEs? To answer this 

question, we collect all patents assigned to potential treatment firms. That is, we take all patents assigned 

to OECD-based MNEs that were filed by inventors outside the MNEs’ home countries. Next, we create one 

dummy variable that takes a value of one if these patents are the result of a collaboration, i.e., if the patent 

lists multiple firms as assignees and another dummy that identifies collaborations with domestic firms. We 

regress both dummy variables on a dummy that captures whether a firm is a technology leader.

Table 3 reports results. The upper panel reports estimates from Linear Probability Models (LPMs), while

the lower panel reports marginal effects from logit regressions. Columns (1) and (3) show the unconditional 

association between firms’ propensity to engage in alliances and their being a technology leader. On

average, technology leaders are 3.1 percentage points (pp) less likely to engage in alliances, which is 

equivalent to 63% of the average alliance rate (“baseline propensity”). Technology leaders are also 

underrepresented in alliances with domestic firms: technology leaders are 1.2 pp less likely to engage in 

such alliances than other firms, equivalent to 52% of the average domestic alliance rate. We reach similar 

conclusions when adding control variables or when using a logit specification.

Labor mobility
Working at MNEs allows workers to acquire advanced skills and organizational know-how that become 

available to local firms once these workers leave the MNE (Poole, 2013; Csáfordi et al., 2018). To explore 

whether technology leaders and lower-ranking MNEs differ with respect to labor circulation in their foreign 

R&D locations, we use the disambiguated inventor identifiers in PatentsView to approximately map how 

inventors move between firms. 
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Table 3: Alliances

All alliances Alliances with domestic firms
(1) (2) (3) (4)

Baseline alliance propensity 0.0512 0.0228
Linear probability models

Top 5% treatment firm -0.031***
(0.0078)

-0.027***
(0.0074)

-0.012***
(0.0042)

-0.016***
(0.0057)

Dummies MNE’s HQ country? Yes Yes
Destination country dummies? Yes Yes
Technology category dummies? Yes Yes
# Observations 15,772 15,772 15,772 15,772
R2 0.007 0.060 0.002 0.035

Logit regressions
Top 5% treatment firm -0.031***

(0.0078)
-0.019***
(0.0043)

-0.012***
(0.0042)

-0.007***
(0.0021)

Dummies MNE’s HQ country? Yes Yes
Destination country dummies? Yes Yes
Technology category dummies? Yes Yes
# Observations 15,772 15,772 15,772 15,772
Pseudo R2 0.023 0.137 0.012 0.169

Notes: ***: p<.01; **: p<.05, *: p<.1. Dependent variable: dummy variable for if patent lists at least one other firm (alliance, 
columns (1) and (2)) or one other domestic firm as a co-assignee (alliance with domestic firms, columns (3) and (4)). Sample: all 
patents by potential treatment MNEs in regions outside an MNE’s home country. Baseline alliance propensity: average likelihood 
that a patent is the result of an alliance. Columns (2) and (4) control for fixed effects for treatment firms’ home countries, for the 
countries of treated regions and for six broad technology categories. Standard errors, clustered at the region level, in parentheses. 

First, we ask how often foreign firms bring their own inventors to R&D locations abroad. To do so, we

identify all inventors who filed patents outside their firm’s home country (and outside the US) and then ask 

if they also filed an earlier patent with this same firm inside its home country. Next, we determine whether 

this was more often the case for inventors of technology leaders than for inventors of lower ranking firms. 

Because the likelihood of observing job switches depends on how many patents inventors file, we control 

for the total patenting output throughout an inventor’s career. Furthermore, we add dummies for the firm’s 

home country and for the inventor’s country of residence. 

Results are reported in Table 4. Being a technology leader has a positive and significant effect on the 

likelihood that inventors are sourced from a firm’s headquarters. The LPM shows that technology leaders 

source inventors 1.8 pp more often from their headquarter locations than technologically less advanced 

MNEs. The logit regression yields a comparable marginal effect. Technology leaders thus bring more of 

their own experienced inventors to their foreign R&D locations than lower ranking MNEs do. 
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Table 4: Inventor sourcing from headquarter country

LPM logit
Baseline HQ sourcing propensity 0.023
Top 5% firm 0.0177*** 0.0140***

(0.0031) (0.0019)
ln(total # patents by inventor) 0.0078*** 0.0056***

(0.0010) (0.0007)
Dummies MNE’s HQ country? Yes Yes
Technology category dummies? Yes Yes
Destination country dummies? Yes Yes
# Observations 421,392 421,392
R2 / pseudo R2 0.016 0.050

Notes: ***: p<.01; **: p<.05, *: p<.1. Dependent variable: dummy variable for whether an inventor patented in the treatment firm’s 
home country before patenting with that same firm abroad. The sample consists of all inventors who file a patent outside the primary 
assignee’s home country between 1975 and 2012 (excluding the US). Top 5% treatment firm: dummy variable for whether the 
MNE ranks in the top 5% in its technology category. 2.4% of patents have multiple assignees. In these cases, the dummy’s value 
is determined by the rank of the patent’s primary assignee. Total # patents by inventor: total number of patents across an inventor’s 
career. Baseline HQ sourcing propensity: average likelihood that inventors are sourced from their firm’s headquarters. LPM: linear 
probability model, logit: marginal effects of a logit specification evaluated at regressor sample averages. Standard errors, clustered 
at the region level, in parentheses.

Table 5: Local job-switching patterns 

Domestic to foreign Foreign to domestic Foreign to foreign
(1)

LPM
(2)

logit
(3)

LPM
(4)

Logit
(5)

LPM
(6)

logit
Baseline propensity 0.1711 0.0872 0.1979
Top 5% firm -0.0490*** -0.0410*** -0.0161*** -0.0151*** -0.0457*** -0.0510***

(0.0083) (0.0055) (0.0048) (0.0046) (0.0087) (0.0170)
ln(total # patents by 
inventor in tech-reg 
cell)

0.1537*** 0.0854*** 0.0177*** 0.0124*** 0.1255*** 0.1030***
(0.0189) (0.0057) (0.0052) (0.0038) (0.0113) (0.0077)

Dummies MNE’s HQ 
country?

Yes Yes Yes Yes Yes Yes

Technology category 
dummies?

Yes Yes Yes Yes Yes Yes

Destination country 
dummies?

Yes Yes Yes Yes Yes Yes

# Observations 36,416 36,416 36,416 36,416 36,416 36,416
R2 / pseudo R2 0.214 0.250 0.038 0.067 0.108 0.106
Notes: ***: p<.01; **: p<.05, *: p<.1. Dependent variable: dummy variable for whether a local inventor in a region-technology 
cell: (a) first patents for a domestic firm and then for a foreign firm (columns (1) and (2)), (b) first patents for a foreign firm and 
then for a domestic firm (columns (3) and (4)) or (c) first patents for a foreign firm and then for another foreign firm (columns (5) 
and (6)). When inventors file patents for several firms, the earliest patent determines the direction of the move. Sample and control 
variables as in Table 5. Top 5% firm: dummy variable for whether the foreign firm is a technology leader. In columns (5) and (6),
the dummy refers to the origin firm. Baseline propensity: average likelihood that an inventor makes the job switch at hand. Standard 
errors, clustered at the region level, in parentheses.
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Do technology leaders also exchange fewer inventors with other firms in the local economy? To answer 

this question, we select all inventors who file two patents or more in a region-technology cell, at least one 

of which for a foreign firm. We control for the inventor’s total number of patents in the cell to account for 

the fact that the more patents an inventor files, the easier it is to detect job switches. 

Results, shown in Table 5, are striking. Technology leaders exchange workers with other firms in the local 

economy at a much lower rate than lower ranking MNEs do. The rate at which they hire inventors from 

domestic firms (columns (1) and (2)) is 4.9 pp lower, against an average mobility rate of 17%. Furthermore,

inventors leave technology leaders for domestic firms at a 1.6 pp lower rate (baseline rate: 9%) and for 

other foreign firms at a 4.6 pp (baseline rate: 20%) lower rate than lower ranking MNEs. 

Citations
Knowledge spillovers may also leave traces in citation patterns. Although citations do not necessarily imply 

knowledge flows, a large literature starting from Jaffe et al. (1993) has interpreted the fact that patents 

disproportionally cite other patents filed in nearby locations as a sign that knowledge flows are 

geographically bounded. Following this literature, we analyze whether treatment patents of foreign 

technology leaders are cited less within the local economy than those of lower-ranking MNEs.

To do so, we match all patents in treated regions to observationally similar patents in other regions, using 

propensity-score matching (see Online Appendix C). The more often the treatment patent is cited by patents 

in treated cells than by control patents, the stronger are the local knowledge spillovers. We estimate this 

spillover intensity once for patents in cells treated by technology leaders and once in cells treated by MNEs 

in the bottom 95 percentiles of the patenting distribution.

Table 6 compares results in these two samples. Both samples suggest that local knowledge spillovers exist:

treatment patents are cited more often by local patents than by control patents. However, whereas treatment 

patents of technology leaders are cited twice as often by local than by control patents, at 5.1, this same ratio 

is substantially higher for patents of lower-ranking firms. This suggests that technology leaders generate 

markedly fewer spillovers than less prominent MNEs.

The same pattern emerges when we focus on spillovers to domestic firms only (i.e., when we focus on 

citations by domestic firms). However, because no control patents cite any of the treatment patents, we 

cannot calculate the citation ratio in this case. Nevertheless, the absolute numbers of citations (8-1 versus 

1-0) still suggest that lower-ranking firms generate more spillovers than technology leaders. 
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Table 6: Citations on local patents to treatment patent

All Domestic Foreign
T5 cells B95cells T5 cells B95cells T5 cells B95cells

Patents in treated cells 0.005%
(6)

0.02%
(46)

0.004%
(5)

0.018%
(38)

0.009%
(1)

0.045%
(8)

Control patents 0.002%
(3)

0.004%
(9)

0.003%
(3)

0.004%
(8)

0%
(0)

0.006%
(1)

N 125,609 234,278 115,549 216,478 10,060 17,800 
T/C ratio 2 5.11 1.67 4.75 undefined 8

Notes: Percentage of patents in treated cells and of control patents that cite the treatment patent. T5 cells: region-technology cells 
treated by a technology leader and matched controls. B95 cells: region-technology cells treated by other firms and matched controls. 
All: all patents in treated cells and their controls; Domestic: patents by domestic firms only; Foreign: patents by foreign firms only.
Absolute numbers of citing patents in parentheses. T/C ratio: ratio of citation propensities of patents in treated cells to control 
patents.

Location choice
Alcacer and Chung (2007) suggest that firms choose investment locations strategically to balance the costs 

and benefits of technology spillovers. These authors show that whereas technologically less advanced firms 

preferentially locate in regions with high absorptive capacity, technology leaders tend to steer clear from 

such locations. 

Table 7 corroborates Alcacer and Chung’s findings. It shows that the socio-economic structure of regions 

treated by technology leaders differs markedly from regions treated by technologically less advanced 

MNEs. Technology leaders tend to choose regions with lower levels of GDP per capita, lower levels of 

schooling, and lower patenting rates than less advanced firms. That is, Table 7 supports Hypothesis 5: 

technology leaders locate in regions with low levels of absorptive capacity. Note that these low levels of 

absorptive capacity may in themselves already explain why technology leaders do not exchange many 

workers and engage in few technological alliances in the local economy: in the regions where they invest, 

opportunities to do so are low. However, our data do not allow us to determine whether this is the only 

strategy technology leaders employ to avoid interactions with local firms.
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Table 7: Location choices
Top 5%

(N=1,073)
Bottom 80%

(N=1,798)
Regional GDP/cap (2005 USD) 18,610 (330) 20,610 (280)
Country GDP/cap (2005 USD) 19,930 (350) 21,940 (290)
Population (millions) 5.22 (0.47) 4.53 (0.33)
Average education 8.24 (0.08) 8.80 (0.06)
GDP growth 2.46% (0.08) 2.48% (0.06)
Patents per 1,000,000 inhabitants 1.44 (0.23) 1.73 (0.21)

Notes: Mean regional characteristics of cells treated by technology leaders and lower-ranking firms in the year before the treatment. 
The sample consists of all treated cells used in the impact analysis (N=3,134). 1,073 cells are treated by top 5% firms, 1,798 cells 
by bottom 80% firms. 263 cells are treated by firms in between (their summary statistics are not shown). Standard errors in 
parentheses.

Conclusion
We have investigated the link between R&D activities of foreign multinationals and patenting in host 

regions, using data on regions that cover almost the entire world and four decades of innovation output. We 

find that the initiation of R&D activities by foreign multinationals has a sizeable and positive effect on local 

innovation rates. The combination of knowledge spillovers to domestic firms and the attraction of new 

foreign firms to the region sets the host economy on a trajectory of persistently higher innovation rates. 

However, host economies benefit less from R&D activities of technology leaders than of lower-ranking 

MNEs. This perhaps surprising finding corroborates a theoretical conjecture according to which technology 

leaders aim to maximize net, not total, spillovers. In support of this conjecture, we find that technology 

leaders tend to invest in regions with lower absorptive capacity than lower ranking firms. Possibly because 

of this, technology leaders are also found to engage in fewer alliances and exchange fewer workers with 

domestic firms. 

Our paper has certain limitations related to the intrinsic shortcomings of studying innovation through patent 

data and to the rudimentary characterization of firm strategies. Moreover, we cannot exclude that a change

in regional conditions both attracts foreign firms and increases local innovation output in a region. Without 

a source of exogenous variation in R&D investments, our estimates may therefore still suffer from some 

bias. However, we believe that this bias is justifiable against the increased external validity that moving 

beyond analyzing individual regions or countries to compare the emergence of new centers of technological 

excellence across the globe affords.

The paper also advances our conceptual understanding of how such new technology centers emerge. It does 

so by systematically linking insights from the economic geography literature on innovation clusters, from 

international economics and international business on MNEs’ location choices and the impact of FDI, and 

from strategic management on MNEs’ incentives to participate in local learning processes. The resulting 
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framework yields a set of hypotheses on the formation and growth of innovation clusters. Crucially, it

suggests that to understand knowledge circulation in clusters, we cannot ignore the incentives and strategic 

choices of the involved actors. Instead of assuming that global and local learning processes unfold 

organically, researchers of cluster dynamics should carefully consider the trade-offs that firms and other 

actors face.

Finally, the paper offers relevant lessons for public policy. Foreign firms’ R&D activities can help regions 

acquire new technological capabilities. However, whether such learning materializes depends not only on 

local innovation systems and absorptive capacities, but also, and crucially, on the type and strategic 

considerations of these foreign firms themselves. Whereas policy makers often focus their efforts on 

attracting technology leaders to their regions, our study suggests that the value of attracting such flagship 

FDI may be overestimated. A more prudent approach would focus on less visible players. This may not 

only require less generous incentives, but also generate more spillovers to the local economy.
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Online Appendix A: Data
US Patents. Patent data come from PatentsView, a database born out of a collaboration between American 

universities and the US government, and spearheaded by the USPTO. It was created in 2012 by the USPTO, 

the US Department of Agriculture, the American Institutes for Research, New York University, the 

University of California at Berkeley, and two data firms.

The PatentsView database is built upon the raw text and XML patent files held by USPTO.11 The data 

contains unique inventor identifiers, geo-coordinates of their location of residence at the time of applying 

for a patent, the technological classes of the patents, the name of the original assignees at the time of the 

grant, their foreign status (US or non-US), and their citations to other patents.12 We use the universe of 

patents granted between 1975 and 2012. This covers 6.0 million patents, granted to 3.6 million distinct 

inventors. The patent data is arranged at the patent-inventor level (one, unique patent-inventor couple per 

row). We keep all recorded institutional assignees in the data.13 There are up to 13 of them for a single 

patent.14

Two features of the PatentsView database are essential for our purpose: (i) assignee, inventor and location 

names are algorithmically disambiguated, and (ii) its wide time coverage enables the study of technology 

diffusion over nearly four decades (1975-2012).15 We provide an overview of the disambiguation 

procedures performed by the PatentsView team below.

Disambiguation. PatentsView uses probabilistic methods to determine whether inventors with the same 

name are indeed the same person. Assignees are also probabilistically disambiguated in a similar way. 

Addresses are disambiguated using geographical APIs.

Assignees. First, minor typos and misspellings are removed from company names using a probabilistic 

string matching algorithm. Second, the main disambiguation relies on string matching algorithms (see 

PatentsView website for details).

                                                            
11 The raw patent files are publicly available at developer.uspto.gov/data or patents.reedtech.com. 

12 Additional information on inventors’ gender, patents’ summary text, technology classification references such as WIPO, CPC or 
IPCR, descriptions of tables and figures, patents’ examiners, and the lawyers in charge of applications are made available by 
PatentsView. We do not use this data in the paper. 
13 Most studies using patent data only use the first assignee. In our context, this would miss collaborations between firms at the 
frontier and less advanced firms. We would underestimate the total number of patents filed for foreign firms if only the first 
assignees were used to determine foreign intervention. 
14 Among the 6 million patents, only 3 have 13 assignees. Two of them–7100279 and 7780143–are assigned to 13 distinct 
Japanese firms. The other–US8965747–is assigned to 12 Chinese and Northwestern University, which is the only institutional 
assignee on this patent. 
15 This feature makes it more attractive than the commonly used NBER patent citation data (Hall et al., 2001). 
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Locations. Locations are disambiguated by querying MaxMind and Google’s Geocoding API, regarded as 

the industry standard to convert typical addresses (such as “Houghton Street, London”) into geographic 

coordinates (such as “latitude: 51.5136, longitude: -0.1169”).

Inventors. Inventor names are arguably the hardest field of the data to disambiguate. They are 

disambiguated via Discriminative Hierarchical Coreference, a machine learning technique that groups 

different spellings of a same author together via hierarchical trees, using information on the set of co-

inventors of one author, the companies she patents for, her locations of residence and the title of her patents.

Details can be found on the PatentsView website. The patents are classified into 259,465 Cooperative Patent 

Classification (CPC) subgroups that are mapped to 37 technological sub-categories and 6 broad 

technological categories (Hall et al., 2001): the 6 broad categories are Chemicals, Computers & 

Communications, Drugs & Medical, Electrical & Electronic, Mechanical, and Others. The data can be 

accessed and downloaded freely from the PatentsView website. Because several new patent classes have 

been introduced since Hall et al.’s publication, we manually assign 74 of these new classes to subcategories. 

As a result, only 2.1% of patents do not have a subcategory, 92% of which lack patent classes in the original 

data. We use a patent’s primary technological subcategory to determine a region-technology cell’s 

technology.

As the disambiguation of assignees, locations and inventors is an ongoing effort, and as the disambiguation 

methods are continuously refined, the same patent datasets downloaded at different times are likely to have 

slightly different identifiers for firms, places and people. 

Subnational data. Next, we assign the patent-inventor couples to 1,549 regions for which we have data on 

GDP per capita (at the national and the regional level), average years of education and population. The data 

is described and used in Gennaioli et al. (2014), and it is available discontinuously from 1960 to 2010 for 

most regions. Typically, two data points in a region would be 5 years apart. We linearly interpolate missing 

values between any two available values, so as to have data for each year. The regions for which we have 

observables cover 97.2% of the USPTO patents. Based on the disambiguated locations of inventors, we 

assign each latitude-longitude pair associated with the location of residence of inventors to a regional 

polygon via a spatial join algorithm.16

The map below, taken from Gennaioli et al. (2014), shows the geographical coverage of the regional data. 

We are indebted to Nicola Gennaioli, Rafael La Porta, Florencio Lopez De Silanes, and Andrei Shleifer for 

sharing their data and shapefile.

                                                            
16 geoinpoly in STATA, by Robert Picard.
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Figure A.1: Coverage of regional data
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Online Appendix B: Technology leaders by technology class
Tables B.1 to B.6 show the ten most innovative firms in the period 1975 to 1985 in terms of patenting 

output by technological category. Technology categories follow the NBER classification developed by 

Hall, et al. (2001). The tables show how many patents a firm produced in the technology category over the 

1975-1985 period, both in levels and as a share of the global total, as well as how many “foreign 

investments” the firm made in the period 1985-2002. A foreign investment is detected when a firm files a 

patent with inventors residing abroad. From 1985 to 2007, there are 1,385 foreign investments in Chemicals,

1,768 in Computers & Communications, 1,136 in Drugs & Medical, 1,851 in Electrical & Electronics, 

1,377 in Mechanical and 1,544 in Other technologies (mainly consisting of low-tech classes such as Apparel 

& Textile, Heating technology, Furniture & House Fixtures and Agriculture & Food).

Table B.1: Chemical

Rank Company Patent count Share of
total

Foreign
investments

Share of
total

1 Bayer Aktiengesellschaft 3496 2.32% 20 1.44%
2 Ciba-Geigy Corporation 2672 1.78% 13 0.94%
3 E. I. Du Pont de Nemours and Company 2558 1.70% 13 0.94%
4 The Dow Chemical Company 2521 1.68% 12 0.87%
5 General Electric Company 2256 1.50% 24 1.73%
6 BASF Aktiengesellschaft 2137 1.42% 17 1.23%
7 Hoechst Aktiengesellschaft 2135 1.42% 5 0.36%
8 Phillips Petroleum Company 2089 1.39% 2 0.14%
9 Exxon Research & Engineering Co. 2000 1.33% 3 0.22%
10 Mobil Oil Corporation 1796 1.19% 1 0.07%

Table B.2: Computers and Communications

Rank Company Patent count
Share 

of
total

Foreign
investments

Share 
of

total
1 International Business Machines 2292 4.30% 137 7.75%
2 Canon Kabushiki Kaisha 1539 2.89% 7 0.40%
3 Hitachi, Ltd. 1390 2.61% 13 0.74%
4 U.S. Philips Corporation 1223 2.29% 40 2.26%
5 Siemens Aktiengesellschaft 1163 2.18% 26 1.47%
6 Bell Telephone Laboratories, Incorporated 1119 2.10% 0 0.00%
7 RCA Corporation 975 1.83% 0 0.00%
8 Motorola, Inc. 913 1.71% 27 1.53%
9 Texas Instruments Incorporated 751 1.41% 36 2.04%
10 Sony Corporation 694 1.30% 0 0.00%
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Table B.3: Drugs and Medical

Rank Company Patent count Share of
total

Foreign
investments

Share of
total

1 Merck & Co., Inc. 878 2.38% 4 0.35%
2 Bayer Aktiengesellschaft 838 2.27% 5 0.44%
3 Ciba-Geigy Corporation 617 1.67% 3 0.26%
4 Eli Lilly and Company 497 1.35% 1 0.09%
5 American Cyanamid Company 429 1.16% 3 0.26%
6 Pfizer Inc. 423 1.14% 0 0.00%
7 E. R. Squibb & Sons, Inc. 402 1.09% 2 0.18%
8 Beecham Group Limited 388 1.05% 0 0.00%
9 The Upjohn Company 343 0.93% 0 0.00%
10 Hoffmann-La Roche Inc. 332 0.90% 1 0.09%

Table B.4: Electrical and Electronic

Rank Company Patent count Share of
total

Foreign
investments

Share of
total

1 General Electric Company 3575 3.52% 46 2.49%
2 RCA Corporation 2864 2.82% 0 0.00%
3 Westinghouse Electric Corp. 2571 2.53% 5 0.27%
4 Hitachi, Ltd. 2366 2.33% 11 0.59%
5 U.S. Philips Corporation 2342 2.30% 40 2.16%
6 Siemens Aktiengesellschaft 2335 2.30% 37 2.00%
7 International Business Machines 1575 1.55% 38 2.05%
8 Tokyo Shibaura Denki Kabushiki Kaisha 1173 1.15% 0 0.00%
9 Xerox Corporation 1160 1.14% 8 0.43%
10 Motorola, Inc. 1093 1.08% 38 2.05%



34 
 

Table B.5: Mechanical

Rank Company Patent count Share of
total

Foreign
investments

Share of
total

1 General Motors Corporation 1699 1.31% 3 0.22%
2 Nissan Motor Co., Ltd. 1696 1.31% 0 0.00%
3 Robert Bosch GmbH 1461 1.13% 26 1.89%
4 Caterpillar Tractor Co. 1237 0.96% 0 0.00%
5 General Electric Company 1187 0.92% 15 1.09%
6 Toyota Jidosha Kogyo Kabushiki Kaisha 1173 0.91% 0 0.00%
7 Honda Giken Kogyo Kabushiki Kaisha 1153 0.89% 0 0.00%
8 Hitachi, Ltd. 900 0.70% 4 0.29%
9 Westinghouse Electric Corp. 771 0.60% 0 0.00%
10 Canon Kabushiki Kaisha 755 0.58% 3 0.22%

Table B.6: Other Technologies

Rank Company Patent count Share of
total

Foreign
investments

Share of
total

1 General Electric Company 969 0.88% 13 0.84%
2 The Singer Company 578 0.53% 4 0.26%
3 Minnesota Mining and Manufacturing 524 0.48% 7 0.45%
4 Mobil Oil Corporation 496 0.45% 3 0.19%
5 Phillips Petroleum Company 478 0.44% 1 0.06%
6 E. I. Du Pont de Nemours and Company 443 0.40% 5 0.32%
7 Caterpillar Tractor Co. 435 0.40% 0 0.00%
8 General Motors Corporation 431 0.39% 3 0.19%
9 Nippon Gakki Seizo Kabushiki Kaisha 418 0.38% 0 0.00%
10 Halliburton Company 406 0.37% 3 0.19%
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Online Appendix C: Citation analysis
In this appendix, we provide details about the matching algorithm used in the patent citation analysis. We 

focus on citations to the treatment patent, removing all citations added by patent examiners as these do not 

reflect technological spillovers. We first collect all patents in treated region-technology cells filed after the 

treatment patent. Next, we match these patents to similar patents outside the treated cell, using a mix of 

propensity score and exact matching. First, we match exactly on patent class (using the 1112 USPC main 

classes, assigned at the time that the patent was granted) and macro-region. Next, we refine these matches 

using propensity score matching with citation counts, number of inventors, and year of application of the 

patent as matching controls. To ensure that matches are close enough, we impose a 0.0002 caliper. Finally, 

we prohibit certain matches. First, matched patents may not come from the same company, inventor or 

country as the treatment patent(s). This prevents that citation patterns reflect national, cultural or linguistic 

preferences, or firm- or inventor-specific knowledge. Second, we exclude matched patents filed over twenty 

years after the treatment patent(s). Figure C.1 summarizes the process.

We repeat this procedure, once for patents assigned to domestic firms and once for patents assigned to 

foreign firms in treated regions. This yields two matched samples. Next, we split these samples into two 

parts: the first contains patents in cells treated by technology leaders (T5 firms) and their statistical twins. 

The second contains patents and matched counterparts in cells treated by lower-ranking firms, which we 

define as firms in the bottom 95 percentiles of the cumulative patenting distribution between 1975 and 1985 

(B95 firms). We now compute the following citation ratio:

=  ( = 1)( = 0)
where is the rank of the treating firm(s) (either T5 or B80) and the status of the citing patents (domestic, 

foreign or all patents). ( = 1) represents the number of citations from patents in treated cells 

( = 1) to the treatment patent. The denominator counts citations from matched patents. The larger this 

ratio, the greater the local spillovers are compared to the baseline scenario captured by the control patents. 

To determine which foreign firms generate the largest knowledge spillovers in treated regions, we compare 

the citation ratios in T5-treated ( ) to those in B95-treated cells ( ).
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Figure C.1: Citation analysis


